Siliceous spicules enhance fracture-resistance and stiffness of pre-colonial Amazonian ceramics

نویسندگان

  • Filipe Natalio
  • Tomas P. Corrales
  • Stephanie Wanka
  • Paul Zaslansky
  • Michael Kappl
  • Helena Pinto Lima
  • Hans-Jürgen Butt
  • Wolfgang Tremel
چکیده

Pottery was a traditional art and technology form in pre-colonial Amazonian civilizations, widely used for cultural expression objects, utensils and as cooking vessels. Abundance and workability of clay made it an excellent choice. However, inferior mechanical properties constrained their functionality and durability. The inclusion of reinforcement particles is a possible route to improve its resistance to mechanical and thermal damage. The Amazonian civilizations incorporated freshwater tree sponge spicules (cauixí) into the clay presumably to prevent shrinkage and crack propagation during drying, firing and cooking. Here we show that isolated siliceous spicules are almost defect-free glass fibres with exceptional mechanical stability. After firing, the spicule Young's modulus increases (from 28 ± 5 GPa to 46 ± 8 GPa) inferring a toughness increment. Laboratory-fabricated ceramic models containing different inclusions (sand, glass-fibres, sponge spicules) show that mutually-oriented siliceous spicule inclusions prevent shrinkage and crack propagation leading to high stiffness clays (E = 836 ± 3 MPa). Pre-colonial amazonian potters were the first civilization known to employ biological materials to generate composite materials with enhanced fracture resistance and high stiffness in the history of mankind.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The largest Bio-Silica Structure on Earth: The Giant Basal Spicule from the Deep-Sea Glass Sponge Monorhaphis chuni

The depth of the ocean is plentifully populated with a highly diverse fauna and flora, from where the Challenger expedition (1873-1876) treasured up a rich collection of vitreous sponges [Hexactinellida]. They have been described by Schulze and represent the phylogenetically oldest class of siliceous sponges [phylum Porifera]; they are eye-catching because of their distinct body plan, which rel...

متن کامل

Late Eocene siliceous sponge fauna of southern Australia: reconstruction based on loose spicules record.

An abundant and diversified assemblage of siliceous loose sponge spicules has been identified in the Late Eocene deposits cropping out along the southern coasts of Australia. Based on the comparison of the obtained spicules with those of living sponges, representatives of at least 43 species within 33 genera, 26 families, and 9 orders of "soft" Demospongiae and Homoscleromorpha have been identi...

متن کامل

Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules.

The earliest evidence for animal life comes from the fossil record of 24-isopropylcholestane, a sterane found in Cryogenian deposits, and whose precursors are found in modern demosponges, but not choanoflagellates, calcareans, hexactinellids, or eumetazoans. However, many modern demosponges are also characterized by the presence of siliceous spicules, and there are no convincing demosponge spic...

متن کامل

Atomistic Simulation of the Mechanical Behaviors of Cu/sic Nanocomposites

The nanocomposites containing nanosized microstructure have extensively motivated researchers to investigate the mechanical properties of such composites. Metal/ceramics nanocomposites, which are composed of low-melting-point metal and high-melting-point ceramics, can provide desirable mechanical properties including high specific stiffness, high plastic flow strength, creep resistance, good ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015